Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Chemosphere ; 298: 134271, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1729626

ABSTRACT

The world's worst outbreak, the second COVID-19 wave, not only unleashed unprecedented devastation of human life, but also made an impact of lockdown in the Indian capital, New Delhi, in particulate matter (PM: PM2.5 and PM10) virtually ineffective during April to May 2021. The air quality remained not only unabated but also was marred by some unusual extreme pollution events. SAFAR-framework model simulations with different sensitivity experiments were conducted using the newly developed lockdown emission inventory to understand various processes responsible for these anomalies in PM. Model results well captured the magnitude and variations of the observed PM before and after the lockdown but significantly underestimated their levels in the initial period of lockdown followed by the first high pollution event when the mortality counts were at their peak (∼400 deaths/day). It is believed that an unaccounted emission source was playing a leading role after balancing off the impact of curtailed lockdown emissions. The model suggests that the unprecedented surge in PM10 (690 µg/m3) on May 23, 2021, though Delhi was still under lockdown, was associated with large-scale dust transport originating from the north west part of India combined with the thunderstorm. The rainfall and local dust lifting played decisive roles in other unusual events. Obtained results and the proposed interpretation are likely to enhance our understanding and envisaged to help policymakers to frame suitable strategies in such kinds of emergencies in the future.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , COVID-19/epidemiology , Cities , Communicable Disease Control , Dust , Environmental Monitoring , Humans , Particulate Matter/analysis , SARS-CoV-2
2.
Urban Clim ; 38: 100913, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1360138

ABSTRACT

We explore the association of biomass-induced black carbon aerosolized virus with COVID-19 in one of the top-ranked polluted hot spot regions of the world, Delhi, at the time when other confounding factors were almost stable and the pandemic wave was on the declining stage. Delhi was worst affected by COVID-19. However, when it was fast returning back to normal after about 6 months with minimum fatalities, it suddenly encountered a reversal with a 10 fold increase in infection counts, coinciding with the onset of the stubble burning period in neighbouring states. We hereby report that the crop residue burning induced lethal aged Black carbon-rich particles which engulfs Delhi during the post-monsoon months of October-November are strongly associated with COVID-19 and largely responsible for the sudden surge. It is found that the virus efficacy is not necessarily related to any particulates but it is more of source-based toxicity of its component where the virus is piggybacking. We conclude that the aged biomass BC particles tend to aggregate and react with other compounds to grow in size, providing temporary habitat to viruses leading to the rapid increase in COVID-19 cases which declined after the crop burning stopped.

3.
Sci Total Environ ; 759: 144299, 2021 Mar 10.
Article in English | MEDLINE | ID: covidwho-967654

ABSTRACT

Aerosol-cloud interactions and feedbacks play an important role in modulating cloud development, microphysical and optical properties thus enhancing or reducing precipitation over polluted/pristine regions. The lockdown enforced on account of Covid-19 pandemic is a unique opportunity to verify the influence of drastic reduction in aerosols on cloud development and its vertical distribution embedded in identical synoptic conditions. Cloud bases measured by ceilometer in Delhi, the capital of India, are observed to propagate from low level to higher levels as the lockdown progresses. It is explained in terms of trends in temporal variation of cloud condensation nuclei (CCN) and precursor gases to secondary hygroscopic aerosols. The large reduction (47%) in CCN estimated from aerosol extinction coefficient during the lockdown results in upward shift of cloud bases. Low clouds with bases located below 3 km are found to have reduced significantly from 63% (of total clouds distributed in the vertical) during pre-lockdown to 12% in lockdown period (less polluted). Cloud base height is found to have an inverse correlation with CCN (r = -0.64) and NO2/NH3 concentrations (r = -0.7). The role of meteorology and CCN in modulating the cloud vertical profiles is discussed in terms of anomalies of various controlling factors like lifting condensation level (LCL), precipitable water content (PWC) and mixing layer height (MLH).


Subject(s)
Atmosphere , COVID-19 , Communicable Disease Control , Humans , India , Pandemics , SARS-CoV-2
4.
Environ Pollut ; 272: 115993, 2021 Mar 01.
Article in English | MEDLINE | ID: covidwho-947212

ABSTRACT

While local anthropogenic emission sources contribute largely to deteriorate metro air quality, long range transport can also play a significant role in influencing levels of pollutants, particularly carbon monoxide (CO) that has a relatively long life span. A nationwide lockdown of two months imposed across India amid COVID-19 led to a dramatic decline in major sources of emissions except for household, mainly from cooking. This initially led to declined levels of CO in two of the largest megacities of India, Delhi and Mumbai under stable weather conditions, followed by a distinctly different variability under the influence of prevailing mesoscale circulation. We hereby trace the sources of CO from local emissions to transport pathways and interpret the observed variability in CO using the interactive WRF-Chem model and back trajectory analysis. For this purpose, COVID-19 emission inventory of CO has been estimated. Model results indicate a significant contribution from externally generated CO in Delhi from surrounding regions and an unusual peak on 17th May amid lockdown due to long range transport from the source region of biofuel emissions in central India. However, the oceanic winds played a larger role in keeping CO levels in check in a coastal megacity Mumbai which otherwise has high CO emissions from household sources due to a larger share of urban slums. Keeping track of evolving carbon-intensive pathways can help inform government responses to the COVID-19 pandemic to prioritize controls of emissions sources.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Communicable Disease Control , Environmental Monitoring , Humans , India , Pandemics , Particulate Matter/analysis , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL